Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Polymer chain in a quenched random medium: slow dynamics and ergodicity breaking

MPG-Autoren
/persons/resource/persons48428

Migliorini,  G.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48668

Rostiashvili,  V. G.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48919

Vilgis,  Thomas A.
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Migliorini, G., Rostiashvili, V. G., & Vilgis, T. A. (2003). Polymer chain in a quenched random medium: slow dynamics and ergodicity breaking. The European Physical Journal B, 33(1), 61-73.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-6313-4
Zusammenfassung
The Langevin dynamics of a self-interacting chain embedded in a quenched random medium is investigated by making use of the generating functional method and one-loop (Hartree) approximation. We have shown how this intrinsic disorder causes different dynamical regimes. Namely, within the Rouse characteristic time interval the anomalous diffusion shows up. The corresponding subdiffusional dynamical exponents have been explicitly calculated and thoroughly discussed. For the larger time interval the disorder drives the center of mass of the chain to a trap or frozen state provided that the Harris parameter, (Δ/bd)N2-υd≥1, where Δ is a disorder strength, b is a Kuhnian segment length, N is a chain length and υ is the Flory exponent. We have derived the general equation for the non-ergodicity function f(p) which characterizes the amplitude of frozen Rouse modes with an index p = 2πj/N. The numerical solution of this equation has been implemented and shown that the different Rouse modes freeze up at the same critical disorder strength Δc ~ N where the exponent γ ≈ 0.25 and does not depend from the solvent quality.