Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electronic transport in monolayers of phthalocyanine polymers

MPG-Autoren
/persons/resource/persons59284

Wu,  J.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48490

Neher,  Dieter
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48973

Wegner,  Gerhard
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tans, S. J., Miedema, R. G., Geerligs, L. J., Dekker, C., Wu, J., Neher, D., et al. (2003). Electronic transport in monolayers of phthalocyanine polymers. Nanotechnology, 14(9), 1043-1050.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-6330-2
Zusammenfassung
We report on a study of the electrical-transport properties of monolayers of phthalocyaninepolysiloxane (PcPS) polymers, and evaluate their potential for use as molecular wires. Monolayers have been deposited with the Langmuir–Blodgett technique on top of Si/SiO2 substrates with interdigitated electrodes. Current–voltage curves have been measured as a function of temperature for samples with varying electrode distance and number of monolayers. In the undoped state, the conduction is well described by the space-charge-limited-current model. From the data we obtain material characteristics such as the density of trap states within the gap and an estimate of the charge-carrier mobility. It appears that the conductivity is too low to yield a measurable current through a single PcPS polymer. Chemical doping and a field effect have been investigated. Oxygen is effective in doping the PcPS layers, resulting in a two orders of magnitude increase of the conductivity. Iodine is not effective as a dopant. By application of a voltage on a back-gate, we observe a field-effect-induced increase of the conductivity by three orders of magnitude. The effect however decays rapidly in time.