Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Supramolecular functional interfacial architectures for biosensor applications

MPG-Autoren
/persons/resource/persons48198

Knoll,  Wolfgang
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons49056

Yu,  F.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48500

Neumann,  T.
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48701

Schiller,  Stefan
MPI for Polymer Research, Max Planck Society;

/persons/resource/persons48487

Naumann,  Renate
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Knoll, W., Yu, F., Neumann, T., Schiller, S., & Naumann, R. (2003). Supramolecular functional interfacial architectures for biosensor applications. Physical Chemistry Chemical Physics, 5(23), 5169-5175.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-63B1-2
Zusammenfassung
This short review describes some of our efforts in generating bio-functional supramolecular interfacial architectures for their use as affinity coatings in biosensor development based on a recently introduced novel optical recording principle combining the resonant excitation of surface plasmon modes and fluorescence detection schemes. Examples are given for multilayer assemblies designed for surface hybridization reactions between a grafted oligonucleotide catcher probe and target strands from solution. By describing the binding behavior of fluorophore-labeled rabbit–anti-mouse IgG to surface-attached mouse IgG, the limit of detection of the surface plasmon fluorescence spectroscopy will be shown to be in the lower femtomolar concentration range. These DNA-and protein binding studies will be complemented by examples for membrane-based biosensor platforms. We will document that tethered lipid bilayer membranes can be assembled with specific capacities of Cm=0.5µF cm–2 and specific resistivities in excess of Rm>20 MΩ cm2. The incorporation of the synthetic ionophore valinomycin can mediate the K+-ion translocation across these tethered membranes, thus reducing the resistivity selectively and reversibly by more than four orders of magnitude.