Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

The photochemistry of [FeIIIN3(cyclam-ac)]PF6 at 266 nm.


Schwarzer,  D.
Research Group of Reaction Dynamics, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

(Supplementary material), 266KB


Torres-Alacan, J., Krahe, O., Filippou, A. C., Neese, F., Schwarzer, D., & Voehringer, P. (2012). The photochemistry of [FeIIIN3(cyclam-ac)]PF6 at 266 nm. Chemistry-A European Journal, 18(10), 3043-3055. doi:10.1002/chem.201103294.

Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-888C-C
The photochemistry of iron azido complexes is quite challenging and poorly understood. For example, the photochemical decomposition of [FeIIIN3(cyclam-ac)]PF6 ([1]PF6), where cyclam-ac represents the 1,4,8,11-tetraazacyclotetradecane-1-acetate ligand, has been shown to be wavelength-dependent, leading either to the rare high-valent iron(V) nitrido complex [FeVN(cyclam-ac)]PF6 ([3]PF6) after cleavage of the azide Nα[BOND]Nβ bond, or to a photoreduced FeII species after Fe[BOND]Nazide bond homolysis. The mechanistic details of this intriguing reactivity have never been studied in detail. Here, the photochemistry of 1 in acetonitrile solution at room temperature has been investigated using step-scan and rapid-scan time-resolved Fourier transform infrared (FTIR) spectroscopy following a 266 nm, 10 ns pulsed laser excitation. Using carbon monoxide as a quencher for the primary iron-containing photochemical product, it is shown that 266 nm excitation of 1 results exclusively in the cleavage of the Fe[BOND]Nazide bond, as was suspected from earlier steady-state irradiation studies. In argon-purged solutions of [1]PF6, the solvent-stabilized complex cation [FeII(CH3CN)(cyclam-ac)]+ (2 red) together with the azide radical (N3.) is formed with a relative yield of 80 %, as evidenced by the appearance of their characteristic vibrational resonances. Strikingly, step-scan experiments with a higher time resolution reveal the formation of azide anions (N3−) during the first 500 ns after photolysis, with a yield of 20 %. These azide ions can subsequently react thermally with 2 red to form [FeIIN3(cyclam-ac)] (1 red) as a secondary product of the photochemical decomposition of 1. Molecular oxygen was further used to quench 1 red and 2 red to form what seems to be the elusive complex [Fe(O2)(cyclam-ac)]+ (6).