English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet

MPS-Authors
/persons/resource/persons37260

Mauritsen,  T.
Climate Dynamics, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Langen, P., Graversen, R. G., & Mauritsen, T. (2012). Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet. Journal of Climate, 25, 3010-3024. doi:10.1175/JCLI-D-11-00246.1.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-89D2-2
Abstract
When climate is forced by a doubling of CO2, a number of feedback processes are induced, such as changes of water vapor, clouds, and surface albedo. Here the CO2 forcing and concomitant feedbacks are studied individually using a general circulation model coupled to an aquaplanet mixed layer ocean. A technique for fixing the radiative effects of moisture and clouds by reusing these variables from 1 x CO2 and 2 x CO2 equilibrium climates in the model's radiation code allows for a detailed decomposition of forcings, feedbacks, and responses. The cloud feedback in this model is found to have a weak global average effect and surface albedo feedbacks have been eliminated. As in previous studies, the water vapor feedback is found to approximately double climate sensitivity, but while its radiative effect is strongly amplified at low latitudes, the resulting response displays about the same degree of polar amplification as the full all-feedbacks experiment. In fact, atmospheric energy transports are found to change in a way that yields the same meridional pattern of response as when the water vapor feedback is turned off. The authors conclude that while the water vapor feedback does not in itself lead to polar amplification by increasing the ratio of high-to low-latitude warming, it does double climate sensitivity both at low and high latitudes. A polar amplification induced by other feedbacks in the system, such as the Planck and lapse rate feedbacks here, is thus strengthened in the sense of increasing the difference in high-and low-latitude warming.