English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect towards a real world

MPS-Authors
/persons/resource/persons57027

Schirber,  S.
Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

JAMES-5-2013.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Schirber, S., Klocke, D., Pincus, R., Quaas, J., & Anderson, J. (2013). Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect towards a real world. Journal of Advances in Modeling Earth Systems, 5, 58-70. doi:10.1029/2012MS000167.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-8B6A-D
Abstract
This study explores the viability of parameter estimation in the comprehensive general circulation model ECHAM6 using ensemble Kalman filter data assimilation techniques. Four closure parameters of the cumulus-convection scheme are estimated using increasingly less idealized scenarios ranging from perfect-model experiments to the assimilation of conventional observations. Updated parameter values from experiments with real observations are used to assess the error of the model state on short 6 h forecasts and on climatological timescales. All parameters converge to their default values in single parameter perfect-model experiments. Estimating parameters simultaneously has a neutral effect on the success of the parameter estimation, but applying an imperfect model deteriorates the assimilation performance. With real observations, single parameter estimation generates the default parameter value in one case, converges to different parameter values in two cases, and diverges in the fourth case. The implementation of the two converging parameters influences the model state: Although the estimated parameter values lead to an overall error reduction on short timescales, the error of the model state increases on climatological timescales.