Benutzerhandbuch Datenschutzhinweis Impressum Kontakt





CO2 Insertion into Metal-Carbon Bonds: A Computational Study of RhI Pincer Complexes


Leitner,  W.
Ostapowicz, T.G.; Hoelscher, M. Rhein Westfal TH Aachen, ITMC, D-52074 Aachen, Germany;
Service Department Leitner (Technical Labs), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Ostapowicz, T. G., Holscher, M., & Leitner, W. (2011). CO2 Insertion into Metal-Carbon Bonds: A Computational Study of RhI Pincer Complexes. Chemistry-A European Journal, 17(37), 10329-10338. doi:10.1002/chem.201101463.

Catalytic carboxylation reactions that use CO2 as a C1 building block are still among the ‘dream reactions’ of molecular catalysis. To obtain a deeper insight into the factors that control the fundamental steps of potential catalytic cycles, we performed a detailed computational study of the insertion reaction of CO2 into rhodium–alkyl bonds. The minima and transition-state geometries for 38 pincer-type complexes were characterized and the according energies for the CC bond-forming step were determined. The electronic properties of the Rhalkyl bond were found to be more important for the magnitude of the activation barrier than the interaction between rhodium and CO2. The charge of the alkyl-chain carbon atom, as well as agostic and orbital interactions with the rhodium, exhibit the most pronounced influence on the energy of the transition states for the CO2 insertion reaction. By varying the backbone and the donor groups of the pincer ligand those properties can be tuned over a very broad range. Thus, it is possible to match the electronic and steric properties with the fundamental requirements of the CO2 insertion into rhodium–alkyl bonds of the ligand framework.