Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Catalytic platinum layers for dye solar cells: A comparative study

MPG-Autoren
/persons/resource/persons59100

Weidenthaler,  Claudia
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58446

Bönnemann,  Helmut
Forschungszentrum Karlsruhe, ITC-CPV, Post Box 3640, D-76021 Karlsruhe, Germany;
Research Group Bönnemann, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Khelashvili, G., Behrens, S., Weidenthaler, C., Vetter, C., Hinsch, A., Kern, R., et al. (2006). Catalytic platinum layers for dye solar cells: A comparative study. Thin Solid Films, 511-512, 342-348. doi:10.1016/j.tsf.2005.12.059.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-9347-B
Zusammenfassung
Comparative investigations concerning the preparation and characterization of zerovalent platinum nanoparticles to be used as precursors for dye-sensitized solar cells (DSSCs) have been carried out. Pt nanopowders were prepared via triorganohydroborate reduction, polyol method, hydrogen reduction, and thermal decomposition of complex compounds. The powders resulting from the various sources were then immobilized on support. Subsequently, the size and crystalline structure of the particles were examined using Transmission Electron Microscopy (TEM), X-Ray diffraction (XRD). The metallic state of the platinum surface- and core-atoms were studied by X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Absorption Near Edge Structure (XANES) analysis. The platinum nanoparticles resulting from the various preparation pathways were each incorporated in a printable platinum paste and then printed on transparent conductive (TCO) glass. After thermal treatment (at 630 °C) the electrochemical performance of the different platinum layers obtained in this study was compared applying impedance spectroscopy. The charge transfer resistance was best observed for the catalyst prepared by the hydrogen reduction method.