Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The influence of magnetic fields on the gravitational-wave emission from binary neutron stars

MPG-Autoren
/persons/resource/persons20657

Giacomazzo,  Bruno
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20670

Rezzolla,  Luciano
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

0901.2722v1.pdf
(Preprint), 204KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Giacomazzo, B., Rezzolla, L., & Baiotti, L. (2009). The influence of magnetic fields on the gravitational-wave emission from binary neutron stars. Physical Review Letters. Retrieved from http://arxiv.org/abs/0901.2722.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-45E1-D
Zusammenfassung
Using accurate and fully general-relativistic simulations we assess the effect that magnetic fields have on the gravitational-wave emission produced during the inspiral and merger of magnetized neutron stars. In particular, we show that magnetic fields have an impact after the merger, because amplified by a Kelvin-Helmholtz instability, but also during the inspiral, because the magnetic tension reduces the stellar tidal deformation for extremely large initial magnetic fields, B_0>10^{17}G. We quantify the influence of magnetic fields by computing the overlap, O, between the waveforms produced during the inspiral by magnetized and unmagnetized binaries. We find that for B_0~10^{17}G, O<0.76 for stars with mass M~1.4Msun, dropping to O<0.67 for M~1.6Msun; in both cases O decreases further after the merger. These results shed light on the recent debate on whether the presence of magnetic fields can be detected during the inspiral and highlight that the use of higher-order methods is essential to draw robust conclusions on this complex process.