English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Low-energy electron-impact ionization of argon: Three-dimensional cross section

MPS-Authors
/persons/resource/persons30934

Ren,  X.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30893

Pflüger,  T.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31125

Ullrich,  J.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30419

Dorn,  A.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ren, X., Pflüger, T., Ullrich, J., Zatsarinny, O., Bartschat, K., Madison, D. H., et al. (2012). Low-energy electron-impact ionization of argon: Three-dimensional cross section. Physical Review. A, 85(3): 032702, pp. 1-8. doi:10.1103/PhysRevA.85.032702.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-A592-1
Abstract
Low-energy (E0 = 70.8 eV) electron-impact single ionization of a 3p electron in argon has been studied experimentally and theoretically. Our measurements are performed using the so-called reaction microscope technique, which can cover nearly a full 4π solid angle for the emission of a secondary electron with energy below 15 eV and projectile scattering angles ranging from −8° to −30°. The measured cross sections are internormalized across all scattering angles and ejected energies. Several theoretical models were employed to predict the triple-differential cross sections (TDCSs). They include a standard distorted-wave Born approximation (DWBA), a modified version to account for the effects of postcollision interaction (DWBA-PCI), a hybrid second-order distorted-wave plus R-matrix (DWB2-RM) method, and the recently developed B-spline R-matrix with pseudostates (BSR) approach. The relative angular dependence of the BSR cross sections is generally found to be in reasonable agreement with experiment, and the importance of the PCI effect is clearly visible in this low-energy electron-impact ionization process. However, there remain significant differences in the magnitude of the calculated and the measured TDCSs.