Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Laser interferometer for spaceborne mapping of the Earth's gravity field

MPG-Autoren
/persons/resource/persons40438

Dehne,  Marina
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons41559

Guzman Cervantes,  Felipe
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40495

Sheard,  Benjamin
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40460

Heinzel,  Gerhard
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

jpconf9_154_012023.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dehne, M., Guzman Cervantes, F., Sheard, B., Heinzel, G., & Danzmann, K. (2009). Laser interferometer for spaceborne mapping of the Earth's gravity field. Journal of Physics: Conference Series, 154: 012023. doi:10.1088/1742-6596/154/1/012023.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-465C-2
Zusammenfassung
The Gravity Recovery and Climate Experiment (GRACE) is one of the present missions to map the Earth's gravity field. The aim of a GRACE follow-on mission is to map the gravitational field of the Earth with higher resolution over at least 6 years. This should lead to a deeper insight into geophysical processes of the Earth's system. One suggested detector for this purpose consists of two identical spacecraft carrying drag-free test masses in a low Earth orbit at an altitude of the order of 300 km, following each other with a distance on the order of 50 to 100 km. Changes in the Earth's gravity field will induce distance fluctuations between two test masses on separate spacecraft. These variations in the frequency range 1 to 100 mHz are to be monitored by a laser interferometer with nanometer precision. We present preliminary results of a heterodyne interferometer configuration using polarising optics, demonstrating the required phase sensitivity.