English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

LISA Pathfinder: the experiment and the route to LISA

MPS-Authors
/persons/resource/persons4350

Bogenstahl,  J.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  K.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40441

Diepholz,  I.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40450

Garcia,  A.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons41559

Guzman,  F.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40460

Heinzel,  G.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40525

Hewitson,  M.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40480

Monsky,  A.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40483

Nofrarias,  Miquel
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40498

Steier,  F.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Vischer,  G.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40507

Wanner,  Gudrun
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40506

Wand,  V.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

LISA Pathfinder.pdf
(Any fulltext), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Armano, M., Benedetti, M., Bogenstahl, J., Bortoluzzi, D., Bosetti, P., Brandt, N., et al. (2009). LISA Pathfinder: the experiment and the route to LISA. Classical and Quantum Gravity, 26(9): 094001.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-4667-8
Abstract
LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.