Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Feshbach resonances in rubidium 87: Precision measurement and analysis

MPG-Autoren
/persons/resource/persons60337

Marte,  A.
Quantum Dynamics, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons60379

Volz,  T.
Quantum Dynamics, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons60368

Schuster,  J.
Quantum Dynamics, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons60303

Dürr,  S.
Quantum Dynamics, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons60356

Rempe,  G.
Quantum Dynamics, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Marte, A., Volz, T., Schuster, J., Dürr, S., Rempe, G., van Kempen, E. G. M., et al. (2002). Feshbach resonances in rubidium 87: Precision measurement and analysis. Physical Review Letters, 89(28): 283202. 283202. Retrieved from http://link.aps.org/abstract/PRL/v89/e283202.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-C17F-A
Zusammenfassung
More than 40 Feshbach resonances in rubidium 87 are observed in the magnetic-field range between 0.5 and 1260 G for various spin mixtures in the lower hyperfine ground state. The Feshbach resonances are observed by monitoring the atom loss, and their positions are determined with an accuracy of 30 mG. In a detailed analysis, the resonances are identified and an improved set of model parameters for the rubidium interatomic potential is deduced. The elastic width of the broadest resonance at 1007 G is predicted to be significantly larger than the magnetic-field resolution of the apparatus. This demonstrates the potential for applications based on tuning the scattering length.