English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantum engineering of squeezed states for quantum communication and metrology

MPS-Authors
/persons/resource/persons40504

Vahlbruch,  Henning
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Chelkowski,  Simon
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

njp7_10_371.pdf
(Any fulltext), 730KB

0707.2845v1.pdf
(Preprint), 398KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Vahlbruch, H., Chelkowski, S., Danzmann, K., & Schnabel, R. (2007). Quantum engineering of squeezed states for quantum communication and metrology. New Journal of Physics, 9, 371. doi:10.1088/1367-2630/9/10/371.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-47CC-F
Abstract
We report the experimental realization of squeezed quantum states of light, tailored for new applications in quantum communication and metrology. Squeezed states in a broad Fourier frequency band down to 1 Hz has been observed for the first time. Nonclassical properties of light in such a low frequency band is required for high efficiency quantum information storage in electromagnetically induced transparency (EIT) media. The states observed also cover the frequency band of ultra-high precision laser interferometers for gravitational wave detection and can be used to reach the regime of quantum non-demolition interferometry. And furthermore, they cover the frequencies of motions of heavily macroscopic objects and might therefore support the attempts to observe entanglement in our macroscopic world.