English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Laser beam quality and pointing measurement with an optical resonator

MPS-Authors
/persons/resource/persons40470

Kwee,  Patrick
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4334

Seifert,  Frank
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40511

Willke,  Benno
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

073103.pdf
(Publisher version), 732KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kwee, P., Seifert, F., Willke, B., & Danzmann, K. (2007). Laser beam quality and pointing measurement with an optical resonator. Review of Scientific Instruments, 78(7): 073103. doi:10.1063/1.2754400.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-4812-1
Abstract
We present a compact diagnostic breadboard that is based on an optical ring resonator for measuring beam quality and pointing of single-frequency continuous wave lasers at a wavelength of 1064 nm. To determine the beam quality of the coherent test beam, this optical resonator is used to perform a mode decomposition into Hermite-Gaussian modes. For our laser system, a power fraction in the fundamental Gaussian mode of 97.2%±0.2% was measured. Residual misalignment and mis-mode-matching to the resonator as well as the astigmatism and/or ellipticity of the test beam have been determined. Numerical simulations showed that measurements of the M2 factor and transversal intensity distribution are not suitable for determining this power fraction. To measure the beam pointing, the fundamental mode of the optical resonator was used as a stable reference. The pointing of the test beam was measured with the differential wave front sensing technique up to Fourier frequencies of 1 kHz with a sensitivity to relative pointing of |epsilon|=1×10−6/sqrt(Hz).