Benutzerhandbuch Datenschutzhinweis Impressum Kontakt





Life cycle of Agapetus fuscipes (Trichoptera, Glossosomatidae) in a first-order upland stream in central Germany


Becker,  Georg
Limnological River Station Schlitz, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Becker, G. (2005). Life cycle of Agapetus fuscipes (Trichoptera, Glossosomatidae) in a first-order upland stream in central Germany. Limnologica, 35(1-2), 52-60.

The number of immature stages and the seasonal patterns of development are basic life history features of a stream dwelling species and knowledge about these important components are essential for understanding its adaptations to its dynamic environment. The life cycle of Agapetus fuscipes (Trichoptera, Glossosomatidae), one of the dominant scrapers in the upper and middle reaches of the Breitenbach, a first-order upland stream in central Germany, was analysed. The pronotum length and the relationship between pronotum length, larval biomass and case length showed seven distinct larval instars, contrary to earlier findings from the Breitenbach. In addition to a few trichopteran species from other functional feeding groups, A. fuscipes is the only scraping caddis fly reported to have more than five larval instars. The moult increments of pronotum length and larval biomass were distinctly lower than in glossosomatid species with five larval instars. A. fuscipes is clearly univoltine in the Breitenbach. First-instar larvae were found from July to the beginning of December, and second-instar larvae from July to January. At the beginning of December the population consisted of the instars I to V, and development did not cease during winter. The sixth-instar larvae occurred mostly in January, and the seventh-instar larvae were never present before January. The prepupae and pupae occurred in April. The last pupae were found at the beginning of September, although most of the emergence took place in June and July. At least five different immature stages with different ecological demands were present at any time throughout the year. The ecological advantage having two additional larval instars compared to other glossosomatid species may be to compensate for the high rate of mouthpart wear that occurs while the larvae feed on the rough Bunter Sandstone substratum. A further advantage may be to spread the risk of high mortality under unfavourable environmental conditions.