日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

A comprehensive Nbody study of mass segregation in star clusters: Energy equipartition and escape

MPS-Authors
/persons/resource/persons20654

Amaro-Seoane,  Pau
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

eDoc318891web.pdf
(出版社版), 2MB

eDoc318891arxiv.pdf
(プレプリント), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Khalisi, E., Amaro-Seoane, P., & Spurzem, R. (2007). A comprehensive Nbody study of mass segregation in star clusters: Energy equipartition and escape. Monthly Notices of the Royal Astronomical Society Letters, 374, 703-720. Retrieved from http://arxiv.org/abs/astro-ph/0602570.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-49E2-5
要旨
We address the dynamical evolution of an isolated self--gravitating system with two stellar mass groups. We vary the individual ratio of the heavy to light bodies, $\mu$ from 1.25 to 50 and alter also the fraction of the total heavy mass $\MH$ from 5% to 40% of the whole cluster mass. Clean-cut properties of the cluster dynamics are examined, like core collapse, the evolution of the central potential, as well as escapers. We present in this work collisional $N$-body simulations, using the high--order integrator NBODY6++ with up to ${\cal N}_{\star}=2\cdot 10^4$ particles improving the statistical significancy of the lower--${\cal N}_{\star}$ simulations by ensemble averages. Equipartition slows down the gravothermal contraction of the core slightly. Beyond a critical value of $\mu \approx 2$, no equipartition can be achieved between the different masses; the heavy component decouples and collapses. For the first time the critical boundary between Spitzer--stable and --unstable systems is demonstrated in direct $N$-body models.