Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

How small are small mutation rates?

MPG-Autoren
/persons/resource/persons57014

Wu,  Bin
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56693

Gokhale,  Chaitanya S.
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56973

Traulsen,  Arne
Research Group Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wu, B., Gokhale, C. S., Wang, L., & Traulsen, A. (2012). How small are small mutation rates? Journal of Mathematical Biology, 64(5), 803-827. doi:10.1007/s00285-011-0430-8.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-D352-A
Zusammenfassung
We consider evolutionary game dynamics in a finite population of size N.
When mutations are rare, the population is monomorphic most of the time. Occasionally
a mutation arises. It can either reach fixation or go extinct. The evolutionary
dynamics of the process under smallmutation rates can be approximated by an embedded
Markov chain on the pure states. Here we analyze how small the mutation rate
should be to make the embedded Markov chain a good approximation by calculating
the difference between the real stationary distribution and the approximated one.
While for a coexistence game, where the best reply to any strategy is the opposite
strategy, it is necessary that the mutation rate μ is less than N−1/2 exp[−N] to ensure
that the approximation is good, for all other games, it is sufficient if themutation rate is
smaller than (N ln N)
−1. Our results also hold for a wide class of imitation processes
under arbitrary selection intensity.