English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Quantum Riemannian Geometry and Black Holes

MPS-Authors

Bojowald,  Martin
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

0602100.pdf
(Preprint), 450KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bojowald, M. (2006). Quantum Riemannian Geometry and Black Holes. In Trends in Quantum Gravity Research (pp. 219-260). New York: Nova SCience.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-4BC4-A
Abstract
Black Holes have always played a central role in investigations of quantum gravity. This includes both conceptual issues such as the role of classical singularities and information loss, and technical ones to probe the consistency of candidate theories. Lacking a full theory of quantum gravity, such studies had long been restricted to black hole models which include some aspects of quantization. However, it is then not always clear whether the results are consequences of quantum gravity per se or of the particular steps one had undertaken to bring the system into a treatable form. Over a little more than the last decade loop quantum gravity has emerged as a widely studied candidate for quantum gravity, where it is now possible to introduce black hole models within a quantum theory of gravity. This makes it possible to use only quantum effects which are known to arise also in the full theory, but still work in a rather simple and physically interesting context of black holes. Recent developments have now led to the first physical results about non-rotating quantum black holes obtained in this way. Restricting to the interior inside the Schwarzschild horizon, the resulting quantum model is free of the classical singularity, which is a consequence of discrete quantum geometry taking over for the continuous classical space-time picture. This fact results in a change of paradigm concerning the information loss problem. The horizon itself can also be studied in the quantum theory by imposing horizon conditions at the level of states. Thereby one can illustrate the nature of horizon degrees of freedom and horizon fluctuations. All these developments allow us to study the quantum dynamics explicitly and in detail which provides a rich ground to test the consistency of the full theory.