English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Towards gravitational wave astronomy: Commissioning and characterization of GEO600

MPS-Authors
/persons/resource/persons4336

Hild,  Stefan
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40456

Grote,  Hartmut
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Smith,  J. R.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;
AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40525

Hewitson,  Martin
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

jpconf6_32_011.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hild, S., Grote, H., Smith, J. R., & Hewitson, M. (2006). Towards gravitational wave astronomy: Commissioning and characterization of GEO600. Journal of Physics: Conf. Ser., 32, 66-73.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-4C10-7
Abstract
During the S4 LSC science run, the gravitational-wave detector GEO600, the first large scale dual recycled interferometer, took 30 days of continuous data. An instrumental duty cycle greater than 96% and a peak sensitivity of 7 × 10-22/surdHz around 1 kHz were achieved during this time. Detector commissioning and characterization work are essential to prepare the worldwide network of gravitational-wave detectors for future extended science runs. This paper describes the detector commissioning that was done in the run-up to S4. The focus is set on techniques used for the identification and removal of limiting noise sources. Furthermore we give some examples for the detector characterization work of GEO600.