English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels

MPS-Authors
/persons/resource/persons56942

Sommer,  Ulrich
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56898

Santer,  Barbara
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons57022

Zöllner,  Eckart
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56752

Jürgens,  Klaus
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56748

Jamieson,  Colleen
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56603

Boersma,  Maarten
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sommer, U., Sommer, F., Santer, B., Zöllner, E., Jürgens, K., Jamieson, C., et al. (2003). Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia, 135(4), 639-647. doi:10.1007/s00442-003-1214-7.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-DBDA-F
Abstract
Here we report on a mesocom study performed to compare the top- down impact of microphagous and macrophagous zooplankton on phytoplankton. We exposed a species-rich, summer phytoplankton assemblage from the mesotrophic Lake Schohsee (Germany) to logarithmically scaled abundance gradients of the microphagous cladoceran Daphnia hyalinaxgaleata and of a macrophagous copepod assemblage. Total phytoplankton biomass, chlorophyll a and primary production showed only a weak or even insignificant response to zooplankton density in both gradients. In contrast to the weak responses of bulk parameters, both zooplankton groups exerted a strong and contrasting influence on the phytoplankton species composition. The copepods suppressed large phytoplankton, while nanoplanktonic algae increased with increasing copepod density. Daphnia suppressed small algae, while larger species compensated in terms of biomass for the losses. Autotrophic picoplankton declined with zooplankton density in both gradients. Gelatinous, colonial algae were fostered by both zooplankton functional groups, while medium- sized (ca. 3,000 mum(3)), non-gelatinous algae were suppressed by both. The impact of a functionally mixed zooplankton assemblage became evident when Daphnia began to invade and grow in copepod mesocosms after ca. 10 days. Contrary to the impact of a single functional group, the combined impact of both zooplankton groups led to a substantial decline in total phytoplankton biomass.