English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Complementary impact of copepods on phytoplankton.

MPS-Authors
/persons/resource/persons56942

Sommer,  Ulrich
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56898

Santer,  Barbara
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56748

Jamieson,  Colleen
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56603

Boersma,  Maarten
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56585

Becker,  Claes
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sommer, U., Sommer, F., Santer, B., Jamieson, C., Boersma, M., Becker, C., et al. (2001). Complementary impact of copepods on phytoplankton. Ecology Letters, 4(6), 545-550.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-DE44-3
Abstract
The differences in the impact of two major groups of herbivorous zooplankton (Cladocera and Copepoda) on summer phytoplankton in a mesotrophic lake were studied. Field experiments were performed in which phytoplankton were exposed to different densities of two major types of herbivorous zooplankton, cladocerans and copepods. Contrary to expectation, neither of the two zooplankton groups significantly reduced phytoplankton biomass. However, there were strong and contrasting impacts on phytoplankton size structure and on individual taxa. Cladocerans suppressed small phytoplankton, while copepods suppressed large phytoplankton. The unaffected size classes compensated for the loss of those affected by enhanced growth. After contamination of the copepod mesocosms with the cladoceran Daphnia, the combined impact of both zooplankton groups caused a decline in total phytoplankton biomass