English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors

MPS-Authors
/persons/resource/persons56890

Rothhaupt,  Karl O.
Department Ecophysiology, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rothhaupt, K. O. (1996). Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. Ecology, 77(3), 716-724.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-E2C3-A
Abstract
Mixotrophic flagellates can compete with obligately heterotrophic flagellates for the uptake of food particles, whereas mixotrophs and obligately phototrophic phytoplankton can compete for soluble nutrients. Competition for soluble nutrients is expected when photosynthesis covers a significant portion of the mixotrophs' carbon metabolism. When heterotrophy predominates, however, mixotrophs may release soluble nutrients and facilitate phototrophs. Mechanistic resource competition theory predicts that, due to their ability to utilize substitutable C and P sources, mixotrophs should be able to coexist with their more specialized competitors under certain conditions of resource supply. In laboratory experiments, the mixotrophic flagellate Ochromonas excluded heterotrophic flagellates when only phototrophic growth was possible. However, Ochromonas was excluded by heterotrophic flagellates when only phagotrophic growth was possible. Both coexisted when food bacteria and light were supplied simultaneously Ochromonas coexisted with a P-limited phytoplankter, Cryptomonas sp, when soluble reactive phosphorus (SRP) and bacterial phosphorus were available as alternative P sources. In nature, the mixotrophic strategy may be successful when resources are limiting. This is supported by published data on the occurrence of mixotrophic chrysophytes