Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Simulation of the white dwarf-white dwarf galactic background in the LISA data


Krolak,  Andrzej
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 399KB

Supplementary Material (public)
There is no public supplementary material available

Edlund, J. A., Tinto, M., Krolak, A., & Nelemans, G. (2005). Simulation of the white dwarf-white dwarf galactic background in the LISA data. Classical and Quantum Gravity, 22(18 Sp. Iss. Sp. Iss. SI), S913-S926.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-4DDB-A
Laser Interferometer Space Antenna (LISA) is a proposed mission to detect and study gravitational radiation in the frequency range from 10-4 to 10-1 Hz. In the low part of its frequency band, the LISA data will contain a stochastic signal consisting of an incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own galaxy. In order to estimate the LISA response to this background, we have simulated a population of white-dwarf binaries recently synthesized by one of us. Our approach relies on an analytic expressions of the LISA Time-Delay Interferometric responses to the gravitational radiation emitted by such systems, and it allows us to implement a computationally efficient and accurate simulation of the background in the LISA data. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time with a period of 1 year, reaching a minimum equal to about twice that of the LISA noise for a period of about 2 months around the time when the Sun–LISA direction is roughly oriented towards the Autumn equinox. This modulation means that the galactic white-dwarf background that will be observable by LISA is a cyclostationary random process with a period of 1 year. We summarize the theory of cyclostationary random processes and present the corresponding generalized spectral method needed to characterize such a process in the LISA data. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarf binary systems present in our galaxy.