Benutzerhandbuch Datenschutzhinweis Impressum Kontakt





Constraint and gauge shocks in one-dimensional numerical relativity


Reimann,  Bernd
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

(Verlagsversion), 519KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Reimann, B., Alcubierre, M., Gonzalez, J. A., & Nunez, D. (2005). Constraint and gauge shocks in one-dimensional numerical relativity. Physical Review D, 71(6): 064021.

We study how different types of blowups can occur in systems of hyperbolic evolution equations of the type found in general relativity. In particular, we discuss two independent criteria that can be used to determine when such blowups can be expected. One criteria is related to the so-called geometric blowup leading to gradient catastrophes, while the other is based upon the ODE-mechanism leading to blowups within finite time. We show how both mechanisms work in the case of a simple one-dimensional wave equation with a dynamic wave speed and sources, and later explore how those blowups can appear in one-dimensional numerical relativity. In the latter case we recover the well known "gauge shocks" associated with Bona-Massó–type slicing conditions. However, a crucial result of this study has been the identification of a second family of blowups associated with the way in which the constraints have been used to construct a hyperbolic formulation. We call these blowups "constraint shocks" and show that they are formulation specific, and that choices can be made to eliminate them or at least make them less severe.