English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication

MPS-Authors
/persons/resource/persons21378

Blume,  Raoul
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21743

Knop-Gericke,  Axel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhang, C., Yan, F., Bayer, B. C., Blume, R., Van der Veen, M. H., Xie, R., et al. (2012). Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication. Journal of Applied Physics, 111(6): 064310. doi:10.1063/1.3694678.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-E7D7-3
Abstract
We have for the first time developed a self-aligned metal catalyst formation process using fully CMOS (complementary metal-oxide-semiconductor) compatible materials and techniques, for the synthesis of aligned carbon nanotubes (CNTs). By employing an electrically conductive cobalt disilicide (CoSi2) layer as the starting material, a reactive ion etch (RIE) treatment and a hydrogen reduction step are used to transform the CoSi2 surface into cobalt (Co) nanoparticles that are active to catalyze aligned CNT growth. Ohmic contacts between the conductive substrate and the CNTs are obtained. The process developed in this study can be applied to form metal nanoparticles in regions that cannot be patterned using conventional catalyst deposition methods, for example at the bottom of deep holes or on vertical surfaces. This catalyst formation method is crucially important for the fabrication of vertical and horizontal interconnect devices based on CNTs.