English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Towards a Stabel Numerical Evolution of Strongly Gravitating Systems in General Relativity :The Conformal Treatments

MPS-Authors

Alcubierre,  Miguel
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Cactus Group, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Brügmann,  Bernd
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Cactus Group, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Dramlitsch,  Thomas
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Cactus Group, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Seidel,  Edward
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Cactus Group, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Stergioulas,  Nikolaos
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Cactus Group, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Takahashi,  Ryoji
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;
Cactus Group, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2796.pdf
(Publisher version), 198KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Alcubierre, M., Brügmann, B., Dramlitsch, T., Font, J. A., Papadopoulos, P., Seidel, E., et al. (2000). Towards a Stabel Numerical Evolution of Strongly Gravitating Systems in General Relativity:The Conformal Treatments. Physical Review D, 62, 044034.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-57C1-2
Abstract
We study the stability of three-dimensional numerical evolutions of the Einstein equations, comparing the standard ADM formulation to variations on a family of formulations that separate out the conformal and traceless parts of the system. We develop an implementation of the conformal-traceless (CT) approach that has improved stability properties in evolving weak and strong gravitational fields, and for both vacuum and spacetimes with active coupling to matter sources. Cases studied include weak and strong gravitational wave packets, black holes, boson stars and neutron stars. We show under what conditions the CT approach gives better results in 3D numerical evolutions compared to the ADM formulation. In particular, we show that our implementation of the CT approach gives more long term stable evolutions than ADM in all the cases studied, but is less accurate in the short term for the range of resolutions used in our 3D simulations. Š2000 The American Physical Society