English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice

MPS-Authors
/persons/resource/persons56948

Staubach,  Fabian
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56786

Künzel,  Sven
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56580

Baines,  John F.
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

Staubach_2012.pdf
(Publisher version), 633KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Staubach, F., Künzel, S., Baines, A. C., Yee, A., McGee, B. M., Bäckhed, F., et al. (2012). Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice. ISME JOURNAL, 6(7), 1345-1355. doi:10.1038/ismej.2011.204.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-EA75-5
Abstract
Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase b-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the longterm maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis.