English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Case studies of the spatial heterogeneity of DNA viruses in the cystic fibrosis lung

MPS-Authors
/persons/resource/persons56872

Rainey,  Paul B.
External Scientific Member Group Experimental and Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Willner, D., Haynes, M. R., Furlan, M., Hanson, N., Kirby, B., Lim, Y. W., et al. (2012). Case studies of the spatial heterogeneity of DNA viruses in the cystic fibrosis lung. American Journal of Respiratory Cell and Molecular Biology, 46(2), 127-131. doi:10.1165/rcmb.2011-0253OC.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-EA9B-2
Abstract
Microbial communities in the lungs of patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) have been shown to be spatially heterogeneous. Viral communities may also vary spatially, leading to localized viral populations and infections. Here, wecharacterized viral communities frommultiple areas of the lungs of two patients with late-stage CF using metagenomics, that is, the explanted lungs froma transplant patient and lungs acquired postmortem. All regions harbored eukaryotic viruses that may infect the human host, notably herpesviruses, anelloviruses, and papillomaviruses. In the highly diseased apical lobes of explant lungs, viral diversity was extremely low, and only eukaryotic viruses were present. The absence of phage suggests that CF-associated microbial biofilms may escape top-down controls by phage predation. The phages present in other lobes of explant lungs and in all lobes of postmortem lungs comprised distinct communities, and encoded genes for clinically important microbial phenotypes, including small colony variants and antibiotic resistance. Based on the these observations, we postulate that viral communities in CF lungs are spatially distinct and contribute to CF pathology by augmenting the metabolic potential of resident microbes, as well as by directly damaging lung tissue via carcinomas and herpesviral outbreaks.