Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Gravitational radiation from cosmic strings


Allen,  Bruce
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available

Allen, B., & Shellard, E. P. S. (1992). Gravitational radiation from cosmic strings. Physical Review D, 45(6), 1898-1912. doi:10.1103/PhysRevD.45.1898.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-5CA7-3
A cosmic-string network in an expanding universe evolves by losing energy to loops which in turn oscillate and emit gravitational radiation. The power radiated at a frequency corresponding to the nth fundamental mode of oscillation of the loop is characterized by a dimensionless constant Pn, with the total power radiated being proportional to γ=ΣPn. Previously, these constants were estimated by analytic or numerical analysis in idealized situations, generally for simple loop shapes. Here, we determine these constants more realistically, for loops produced in a numerical simulation of the cosmic-string network. The resulting numerical values of the Pn appear to show a linear dependence on loop size, indicating that small-scale structure on the loops is very important in determining the overall radiation power. Long-string radiation is also studied, confirming this conclusion. The power radiated by a horizon-length string increases with time, because in the current simulations the small-scale structure on the string does not yet scale relative to the horizon length. With an appropriate extrapolation one can conclude that gravitational radiation from the long-string network will provide a significant energy-loss mechanism and may occur at a rate roughly comparable to energy loss due to loop formation.