Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Self similar expanding solutions of the planar network flow

MPG-Autoren

Saez,  Mariel
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

0704.3113v1.pdf
(Preprint), 178KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mazzeo, R., & Saez, M. (n.d.). Self similar expanding solutions of the planar network flow.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-5FC1-6
Zusammenfassung
We prove the existence of self-similar expanding solutions of the curvature flow on planar networks where the initial configuration is any number of half-lines meeting at the origin. This generalizes recent work by Schn\"urer and Schulze which treats the case of three half-lines. There are multiple solutions, and these are parametrized by combinatorial objects, namely Steiner trees with respect to a complete negatively curved metric on the unit ball which span $k$ specified points on the boundary at infinity. We also provide a sharp formulation of the regularity of these solutions at $t=0$.