Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Cauchy Problem for Membranes

MPG-Autoren

Milbredt,  Olaf
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

0807.3465v1.pdf
(Preprint), 205KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Milbredt, O. (n.d.). The Cauchy Problem for Membranes. Classical and Quantum Gravity.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-6016-0
Zusammenfassung
We show existence and uniqueness for timelike minimal submanifolds (world volume of p-branes) in ambient Lorentz manifolds admitting a time function in a neighborhood of the initial submanifold. The initial value formulation introduced and the conditions imposed on the initial data are given in purely geometric terms. Only an initial direction must be prescribed in order to provide uniqueness for the geometric problem. The result covers non-compact initial submanifolds of any codimension. By considering the angle of the initial direction and vector fields normal to the initial submanifold with the unit normal to the foliation given by the time function we obtain a quantitative description of "distance" to the light cone. This description makes it possible to treat initial data which are arbitrarily close to the light cone. Imposing uniform assumptions give a lower bound for a notion of "time of existence" depending only on geometric quantities involving the length of timelike curves lying in the solution. Comment of the Author: adapted from dissertation arXiv:0807.2539