Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

LTB spacetimes in terms of Dirac observables

MPG-Autoren
/persons/resource/persons2681

Tambornino,  Johannes
Quantum Gravity and Unified Theories, AEI Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20719

Thiemann,  Thomas
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

0906.0569v1.pdf
(Preprint), 365KB

CQG_27_10_105013.pdf
(beliebiger Volltext), 331KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Giesel, K., Tambornino, J., & Thiemann, T. (2010). LTB spacetimes in terms of Dirac observables. Classical and quantum gravity, 27(10): 105013. doi:10.1088/0264-9381/27/10/105013.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-607C-C
Zusammenfassung
The construction of Dirac observables, that is gauge invariant objects, in General Relativity is technically more complicated than in other gauge theories such as the standard model due to its more complicated gauge group which is closely related to the group of spacetime diffeomorphisms. However, the explicit and usually cumbersome expression of Dirac observables in terms of gauge non invariant quantities is irrelevant if their Poisson algebra is sufficiently simple. Precisely that can be achieved by employing the relational formalism and a specific type of matter proposed originally by Brown and Kucha{\v r}, namely pressureless dust fields. Moreover one is able to derive a compact expression for a physical Hamiltonian that drives their physical time evolution. The resulting gauge invariant Hamiltonian system is obtained by Higgs -- ing the dust scalar fields and has an infinite number of conserved charges which force the Goldstone bosons to decouple from the evolution. In previous publications we have shown that explicitly for cosmological perturbations. In this article we analyse the spherically symmetric sector of the theory and it turns out that the solutions are in one--to--one correspondence with the class of Lemaitre--Tolman--Bondi metrics. Therefore the theory is capable of properly describing the whole class of gravitational experiments that rely on the assumption of spherical symmetry.