Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Isomerization mechanism of the HcRed fluorescent protein chromophore

MPG-Autoren
/persons/resource/persons58735

Lan,  Zhenggang
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58517

Doerr,  Markus
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, Q., Li, Z., Lan, Z., Pfisterer, C., Doerr, M., Fischer, S., et al. (2012). Isomerization mechanism of the HcRed fluorescent protein chromophore. Physical Chemistry Chemical Physics, 14(32), 11413-11424. doi:10.1039/c2cp41217a.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-EEDC-E
Zusammenfassung
To understand how the protein achieves fluorescence, the isomerization mechanism of the HcRed chromophore is studied both under vacuum and in the solvated red fluorescent protein. Quantum mechanical (QM) and quantum mechanical/molecular mechanical (QM/MM) methods are applied both for the ground and the first excited state. The photoinduced processes in the chromophore mainly involve torsions around the imidazolinone-bridge bond (tau) and the phenoxy-bridge bond (phi). Under vacuum, the isomerization of the cis-trans chromophore essentially proceeds by tau twisting, while the radiationless decay requires phi torsion. By contrast, the isomerization of the cis-trans chromophore in HcRed occurs via simultaneous tau and phi twisting. The protein environment significantly reduces the barrier of this hula twist motion compared with vacuum. The excited-state isomerization barrier via the phi rotation of the cis-coplanar conformer in HcRed is computed to be significantly higher than that of the trans-non-coplanar conformer. This is consistent with the experimental observation that the cis-coplanar-conformation of the chromophore is related to the fluorescent properties of HcRed, while the trans-non-planar conformation is weakly fluorescent or non-fluorescent. Our study shows how the protein modifies the isomerization mechanism, notably by interactions involving the nearby residue Ile197, which keeps the chromophore coplanar and blocks the twisting motion that leads to photoinduced radiationless decay.