English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Diurnal equilibrium convection and land surface-atmosphere interactions in an idealized cloud-resolving model

MPS-Authors
/persons/resource/persons59492

Hohenegger,  Cathy
Hans Ertel Research Group Clouds and Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schlemmer, L., Hohenegger, C., Schmidli, J., & Schär, C. (2012). Diurnal equilibrium convection and land surface-atmosphere interactions in an idealized cloud-resolving model. Quarterly Journal of the Royal Meteorological Society, 138, 1526-1539. doi:10.1002/qj.1892.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-F001-B
Abstract
The influence of soil moisture and atmospheric stability on mid-latitude diurnal convection and land-atmosphere exchange is investigated in an idealized cloud-resolving modelling framework using a full set of parametrization schemes. In each member of a series of month-long experiments, the model attains a state where deep, precipitating convection is triggered every day. This state is referred to as equilibrium diurnal convection. The triggering occurs via different mechanisms depending on the atmosphere-soil setting. In our framework latent heat fluxes comprise the primary control over the precipitation amounts. We find that evaporation is regulated by the availability of energy on the one hand and the availability of soil moisture and the near-surface saturation deficit of the atmosphere on the other. Increased cloud cover over wet soils reduces net short-wave radiation but increases net long-wave radiation, leading to a near-compensation of the two effects on available energy. Increased boundary layer moisture is removed by deep convection, thus increasing the near-surface saturation deficit and preventing a negative feedback of boundary layer moisture content on the latent heat fluxes. We also find that there is a spatial correlation between soil moisture and precipitation anomalies, suggesting that the soil moisture precipitation feedback acts on a scale of 10-50 km. © 2012 Royal Meteorological Society.