Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Conservation of polymorphic simple sequence loci in cetacean species

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Schlötterer, C., Amos, B., & Tautz, D. (1991). Conservation of polymorphic simple sequence loci in cetacean species. Nature, 354(6348), 63-65. doi:10.1038/354063a0.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-0F19-6
LENGTH polymorphisms within simple-sequence loci occur ubiquitously in non-coding eukaryotic DNA and can be highly informative in the analysis of natural populations 1-4. Simple-sequence length polymorphisms (SSLP) in the long-finned pilot whale Globicephala melas (Delphinidae) have provided useful information on the mating system as well as on the genetic structure of populations 5. We have therefore tested whether the polymerase chain reaction primers designed for Globicephala could also be used to uncover variability in other whale species. Homologous loci could indeed be amplified from a diverse range of whales, including all toothed (Odontoceti) and baleen whales (Mysticeti) tested. Cloning and sequencing these loci from 11 different species revealed an unusually high conservation of sequences flanking the simple-sequence stretches, averaging 3.2% difference over 35-40 Myr. This represents the lowest divergence rate for neutral nucleotide positions found for any species group so far and raises the possible need for a re-evaluation of the age of the modern whales. On the other hand, the high conservation of non-coding sequences in whales simplifies the application of SSLP DNA fingerprinting in cetacean species, as primers designed for one species will often uncover variability in other species.