日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Chromodynamics of Cooperation in Finite Populations

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Traulsen, A., & Nowak, M. A. (2007). Chromodynamics of Cooperation in Finite Populations. PLoS One, 2(3). doi:10.1371/journal.pone.0000270.


引用: https://hdl.handle.net/11858/00-001M-0000-0010-0FF9-E
要旨
Background. The basic idea of tag-based models for cooperation is that individuals recognize each other via arbitrary signals, so-called tags. If there are tags of different colors, then cooperators can always establish new signals of recognition. The resulting "chromodynamics'' is a mechanism for the evolution of cooperation. Cooperators use a secret tag until they are discovered by defectors who then destroy cooperation based on this tag. Subsequently, a fraction of the population manages to establish cooperation based on a new tag. Methodology/Principal Findings. We derive a mathematical description of stochastic evolutionary dynamics of tag-based cooperation in populations of finite size. Benefit and cost of cooperation are given by b and c. We find that cooperators are more abundant than defectors if b/c > 1+2u/v, where u is the mutation rate changing only the strategy and v is the mutation rate changing strategy and tag. We study specific assumptions for u and v in two genetic models and one cultural model. Conclusions/Significance. In a genetic model, tag-based cooperation only evolves if a gene encodes both strategy and tag. In a cultural model with equal mutation rates between all possible phenotypes (tags and behaviors), the crucial condition is b/c > (K+1)/(K21), where K is the number of tags. A larger number of tags requires a smaller benefit-to-cost ratio. In the limit of many different tags, the condition for cooperators to have a higher average abundance than defectors becomes b > c.