English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evolution of cooperation by multilevel selection

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Traulsen, A., & Nowak, M. A. (2006). Evolution of cooperation by multilevel selection. Proceedings of the National Academy of Sciences of the United States of America, 103(29), 10952-10955. doi:10.1073/pnas.0602530103.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-1009-1
Abstract
We propose a minimalist stochastic model of multilevel (or group) selection. A population is subdivided into groups. Individuals interact with other members of the group in an evolutionary game that determines their fitness. Individuals reproduce, and offspring are added to the same group. If a group reaches a certain size, it can split into two. Faster reproducing individuals lead to larger groups that split more often. In our model, higher-level selection emerges as a byproduct of individual reproduction and population structure. We derive a fundamental condition for the evolution of cooperation by group selection: if b/c > 1 + n/m, then group selection favors cooperation. The parameters b and c denote the benefit and cost of the altruistic act, whereas n and m denote the maximum group size and the number of groups. The model can be extended to more than two levels of selection and to include migration.