User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Minimal model for tag-based cooperation

There are no MPG-Authors available
External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Traulsen, A., & Schuster, H. G. (2003). Minimal model for tag-based cooperation. Physical review E, 68(4). doi:10.1103/PhysRevE.68.046129.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-101B-8
Recently, Riolo [Nature (London) 414, 441 (2001)] showed by computer simulations that cooperation can arise without reciprocity when agents donate only to partners who are sufficiently similar to themselves. One striking outcome of their simulations was the observation that the number of tolerant agents that support a wide range of players was not constant in time, but showed characteristic fluctuations. The cause and robustness of these tides of tolerance remained to be explored. Here we clarify the situation by solving a minimal version of the model of Riolo It allows us to identify a net surplus of random changes from intolerant to tolerant agents as a necessary mechanism that produces these oscillations of tolerance, which segregate different agents in time. This provides a new mechanism for maintaining different agents, i.e., for creating biodiversity. In our model the transition to the oscillating state is caused by a saddle node bifurcation. The frequency of the oscillations increases linearly with the transition rate from tolerant to intolerant agents.