English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning elementary movements jointly with a higher level task

MPS-Authors
/persons/resource/persons84021

Kober,  J.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84135

Peters,  J.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kober, J., & Peters, J. (2011). Learning elementary movements jointly with a higher level task. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011) (pp. 338-343).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-4C5C-A
Abstract
Many motor skills consist of many lower level elementary movements that need to be sequenced in order to achieve a task. In order to learn such a task, both the primitive movements as well as the higher-level strategy need to be acquired at the same time. In contrast, most learning approaches focus either on learning to combine a fixed set of options or to learn just single options. In this paper, we discuss a new approach that allows improving the performance of lower level actions while pursuing a higher level task. The presented approach is applicable to learning a wider range motor skills, but in this paper, we employ it for learning games where the player wants to improve his performance at the individual actions of the game while still performing well at the strategy level game. We propose to learn the lower level actions using Cost-regularized Kernel Regression and the higher level actions using a form of Policy Iteration. The two approaches are coupled by their transition probabilities. We evaluate the approach on a side-stall-style throwing game both in simulation and with a real BioRob.