Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Empirical Inference


Schölkopf,  B.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Schölkopf, B. (2011). Empirical Inference. International Journal of Materials Research, 2011(7), 809-814. doi:10.3139/146.110530.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-4C91-1
Empirical Inference is the process of drawing conclusions from observational data. For instance, the data can be measurements from an experiment, which are used by a researcher to infer a scientific law. Another kind of empirical inference is performed by living beings, continuously recording data from their environment and carrying out appropriate actions. Do these problems have anything in common, and are there underlying principles governing the extraction of regularities from data? What characterizes hard inference problems, and how can we solve them? Such questions are studied by a community of scientists from various fields, engaged in machine learning research. This short paper, which is based on the author’s lecture to the scientific council of the Max Planck Society in February 2010, will attempt to describe some of the main ideas and problems of machine learning. It will provide illustrative examples of real world machine learning applications, including the use of machine learning towards the design of intelligent systems.