English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Crystal structure of the plant PPC decarboxylase AtHAL3a complexed with an ene-thiol reaction intermediate

MPS-Authors
/persons/resource/persons77763

Bieseler,  B.
Huber, Robert / Structure Research, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78142

Huber,  R.
Huber, Robert / Structure Research, Max Planck Institute of Biochemistry, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Steinbacher, S., Hernandez-Acosta, P., Bieseler, B., Blaesse, M., Huber, R., Culianez-Macia, F. A., et al. (2003). Crystal structure of the plant PPC decarboxylase AtHAL3a complexed with an ene-thiol reaction intermediate. Journal of Molecular Biology, 327(1), 193-202.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-6C6B-1
Abstract
The Arabidopsis thaliana protein AtHAL3a decarboxylates 4'- phospho-pantothenoylcysteine to 4'-phosphopantetheine, a step in coenzyme A biosynthesis. Surprisingly, this decarboxylation reaction is carried out as an FMN-dependent redox reaction. In the first half-reaction, the side-chain of the cysteine residue of 4'-phosphopantothenoylcysteine is oxidised and the thioaldehyde intermediate decarboxylates spontaneously to the 4 -phosphopantothenoyl-aminoethenethiol intermediate. In the second half-reaction this compound is reduced to 4 - phosphopantetheine and the FMNH2 cofactor is re-oxidised. The active site mutant C175S is unable to perform this reductive half-reaction. Here, we present the crystal structure of the AtHAL3a mutant C175S in complex with the reaction intermediate pantothenoyl-aminoethenethiol and FMNH2. The geometry of binding suggests that reduction of the C-alpha=C-beta double bond of the intermediate can be performed by direct hydride- transfer from N5 of FMNH2 to C-beta of the aminoethenethiol- moiety supported by a protonation of C-alpha by Cys175. The binding mode of the substrate is very similar to that previously observed for a pentapeptide to the homologous enzyme EpiD that introduces the aminoethenethiol-moiety as final reaction product at the C terminus of peptidyl-cysteine residues. This finding further supports our view that these homologous enzymes form a protein family of homo-oligomeric flavin-containing cysteine decarboxylases, which we have termed HFCD family. (C) 2003 Elsevier Science Ltd. All rights reserved.