Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe

MPG-Autoren
/persons/resource/persons77974

Frey,  H. G.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78200

Keilmann,  F.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78270

Kriele,  A.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78045

Guckenberger,  R.
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Frey, H. G., Keilmann, F., Kriele, A., & Guckenberger, R. (2002). Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe. Applied Physics Letters, 81(26), 5030-5032.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-6D99-F
Zusammenfassung
We show improvement of the optical and topographical resolution of scanning near-field optical microscopy by introducing a "tip-on-aperture" probe, a metallic tip formed on the aperture of a conventional fiber probe. The tip concentrates the light passing through the aperture. Thus the. advantages of aperture and apertureless scanning near-field optical microscopy are combined. Tips are grown by electron beam deposition and then covered with metal. Fluorescent beads are imaged with a resolution down to 25 nm (full width at half maximum) in the optical signal. The near-field appears strongly localized within 5 mn in z direction, thus promising even higher resolution with sharper tips. (C) 2002 American Institute of Physics.