English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function

MPS-Authors
/persons/resource/persons78606

Sasaki,  T.
Former Research Groups, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78797

Timpl,  R.
Former Research Groups, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kreuger, J., Matsumoto, T., Vanwildemeersch, M., Sasaki, T., Timpl, R., Claesson-Welsh, L., et al. (2002). Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function. EMBO Journal, 21(23), 6303-6311.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-6DBA-5
Abstract
The anti-angiogenic activity of endostatin (ES) depends on interactions with heparan sulfate (HS). In the present study, intact HS chains of greater than or equal to15 kDa bound quantitatively to ES whereas N-sulfated HS decasaccharides, with affinity for several fibroblast growth factor (FGF) species, failed to bind. Instead, ES-binding oligosaccharides composed of mixed N-sulfated and N-acetylated disaccharide units were isolated from pig intestinal HS. A 10/12mer ES- binding epitope was identified, with two N-sulfated regions separated by at least one N-acetylated glucosamine unit (SAS- domain). Cleavage at the N-acetylation site disrupted ES binding. These findings point to interaction between discontinuous sulfated domains in HS and arginine clusters at the ES surface. The inhibitory effect of ES on vascular endothelial growth factor-induced endothelial cell migration was blocked by the ES-binding SAS-domains and by heparin oligosaccharides (12mers) similar in length to the ES-binding SAS-domains, but not by timers capable of FGF binding. We propose that SAS-domains modulate the biological activities of ES and other protein ligands with extended HS-binding sites. The results provide a rational explanation for the preferential interaction of ES with certain HS proteoglycan species.