Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Simultaneous quantification of cell motility and protein-membrane-association using active contours

MPG-Autoren
/persons/resource/persons77812

Bretschneider,  T.
Gerisch, Günther / Cell Dynamics, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dormann, D., Libotte, T., Weijer, C. J., & Bretschneider, T. (2002). Simultaneous quantification of cell motility and protein-membrane-association using active contours. Cell Motility and the Cytoskeleton, 52(4), 221-230.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-6E9C-1
Zusammenfassung
We present a new method for the quantification of dynamic changes in fluorescence intensities at the cell membrane of moving cells. It is based on an active contour method for cell- edge detection, which allows tracking of changes in cell shape and position. Fluorescence intensities at specific cortical subregions can be followed in space and time and correlated with cell motility. The translocation of two GFP tagged proteins (CRAC and GRP1) from the cytosol to the membrane in response to stimulation with the chemoattractant cAMP during chemotaxis of Dictyostelium cells and studies of the spatio- temporal dynamics of this process exemplify the method: We show that the translocation can be correlated with motility parameters and that quantitative differences in the rate of association and dissociation from the membrane can be observed for the two PH domain containing proteins. The analysis of periodic CRAC translocation to the leading edge of a cell responding to natural cAMP waves in a mound demonstrates the power of this approach. It is not only capable of tracking the outline of cells within aggregates in front of a noisy background, but furthermore allows the construction of spatio- temporal polar plots, capturing the dynamics of the protein distribution at the cell membrane within the cells' moving co- ordinate system. Compilation of data by means of normalised polar plots is suggested as a future tool, which promises the so-far impossible practicability of extensive statistical studies and automated comparison of complex spatio-temporal protein distribution patterns.