User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

A critical role for tapasin in the assembly and function of multimeric mhc class i-tap complexes

There are no MPG-Authors available
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Ortmann, B., Copeman, J., Lehner, P. J., Sadasivan, B., Herberg, J. A., Grandea, A. G., et al. (1997). A critical role for tapasin in the assembly and function of multimeric mhc class i-tap complexes. Science, 277(5330), 1306-1309. doi:10.1126/science.277.5330.1306.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-7282-5
Newly assembled major histocompatibility complex (MHC) class I molecules, together with the endoplasmic reticulum chaperone calreticulin, interact with the transporter associated with antigen processing (TAP) through a molecule called tapasin, The molecular cloning of tapasin revealed it to be a transmembrane glycoprotein encoded by an MHC-linked gene. It is a member of the immunoglobulin superfamily with a probable cytoplasmic endoplasmic reticulum retention signal. Up to four MHC class I-tapasin complexes were found to bind to each TAP molecule. Expression of tapasin in a negative mutant human cell line (220) restored class I-TAP association and normal class I cell surface expression. Tapasin expression also corrected the defective recognition of virus-infected 220 cells by class I-restricted cytotoxic T cells, establishing a critical functional role for tapasin in MHC class I-restricted antigen processing. [References: 38]