English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Active site-directed inhibitors of Rhodococcus 20 S proteasome. Kinetics and mechanism

MPS-Authors
There are no MPG-Authors available
Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Mc Cormack, T., Baumeister, W., Grenier, L., Moomaw, C., Plamondon, L., Pramanik, B., et al. (1997). Active site-directed inhibitors of Rhodococcus 20 S proteasome. Kinetics and mechanism. Journal of Biological Chemistry., 272(42), 26103-26109.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-72AC-9
Abstract
We have studied the mechanism of inhibition of the recombinant Rhodococcus proteasome by four different chemical classes of active site-directed small molecule inhibitors. Clasto-lactacystin beta-lactone is a time-dependent inhibitor of the Rhodococcus proteasome's ability to hydrolyze Suc-Leu-Leu-Val-Tyr-AMC, a substrate for this proteasome's single type of active site, and proceeds with a kinact/[I] of 1,700 M-1 s-1. Using peptide mapping of tryptic digests, LC/MS, and amino acid sequence analysis, we have established that the Ogamma of the hydroxyl group on the N-terminal threonine of the beta-subunit is the sole modification made by the beta-lactone. Active site titrations of the Rhodococcus proteasome with reversible peptide aldehydes show the expected stoichiometry of one inhibitor molecule per beta-subunit. Prior modification with beta-lactone completely abrogates the binding of peptidyl boronic acid inhibitors, suggesting that these inhibitors also inactivate the enzyme by reacting with the Ogamma moiety on Thr1. High performance liquid chromatography analysis of peptidyl vinyl sulfone-modified intact Rhodococcus proteasome beta-subunit and its tryptic peptides suggests that the peptidyl vinyl sulfone modifies a residue in the N-terminal 20 amino acids. This modification is also blocked by prior treatment with beta-lactone.