English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Substitution patterns are under different influences in primates and rodents

MPS-Authors
/persons/resource/persons50125

Clement,  Y.
Evolutionary Genomics (Peter Arndt), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50074

Arndt,  P. F.
Evolutionary Genomics (Peter Arndt), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Clement, Y., & Arndt, P. F. (2011). Substitution patterns are under different influences in primates and rodents. Genome Biol Evol, 3, 236-45. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21339508 http://gbe.oxfordjournals.org/content/3/236.full.pdf.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-7930-B
Abstract
There are large-scale variations of the GC-content along mammalian chromosomes that have been called isochore structures. Primates and rodents have different isochore structures, which suggests that these lineages exhibit different modes of GC-content evolution. It has been shown that, in the human lineage, GC-biased gene conversion (gBGC), a neutral process associated with meiotic recombination, acts on GC-content evolution by influencing A or T to G or C substitution rates. We computed genome-wide substitution patterns in the mouse lineage from multiple alignments and compared them with substitution patterns in the human lineage. We found that in the mouse lineage, gBGC is active but weaker than in the human lineage and that male-specific recombination better predicts GC-content evolution than female-specific recombination. Furthermore, we were able to show that G or C to A or T substitution rates are predicted by a combination of different factors in both lineages. A or T to G or C substitution rates are most strongly predicted by meiotic recombination in the human lineage but by CpG odds ratio (the observed CpG frequency normalized by the expected CpG frequency) in the mouse lineage, suggesting that substitution patterns are under different influences in primates and rodents.