日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

High-throughput sequencing of frozen and paraffin-embedded tumor and normal tissue

MPS-Authors
/persons/resource/persons50378

Kerick,  M.
Cancer Genomics (Michal-Ruth Schweiger), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50598

Timmermann,  B.
Sequencing, Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50543

Schweiger,  M. R.
Cancer Genomics (Michal-Ruth Schweiger), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Kerick.pdf
(全文テキスト(全般)), 164KB

付随資料 (公開)
There is no public supplementary material available
引用

Kerick, M., Timmermann, B., & Schweiger, M. R. (2010). High-throughput sequencing of frozen and paraffin-embedded tumor and normal tissue. Pathologe, 31(suppl 2), 255-257. doi:10.1007/s00292-010-1377-z.


引用: https://hdl.handle.net/11858/00-001M-0000-0010-7A3C-B
要旨
Until now high-throughput sequencing of tumor samples relied on DNA isolated from fresh frozen tissues, the preparation of which, however, is relatively laborious. The use of preserved material, i.e. from tissue banks, could help to avoid this limitation and would enable the reanalysis of diverse clinical trials. So far we have shown that formalin-fixed paraffin-embedded (FFPE) tissue samples can be used for genomic re-sequencing processes. FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, and lymphogenic and/or hematogenic metastases. To generate models which predict the response to therapy, FFPE tissue also has the advantage that it is available from a variety of clinical trials. Second generation sequencing techniques are not only applicable to snap frozen and FFPE tissues for whole genome analyses but also for targeted resequencing approaches. In addition, the detection of copy number variations and mutations in FFPE tissues can be obtained within one sequencing run. The possibility of using genome-wide technologies irrespective of the mode of storage facilitates the retrieval of useful material and is a prerequisite for subsequent computational modelling approaches.