English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Flexible Multiwell Format for Immunofluorescence Screening Microscopy of Small-Molecule Inhibitors.

MPS-Authors
/persons/resource/persons50528

Scholz,  Anne-Kathrin
• Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50435

Morkel,  Markus
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50130

Dahl,  Andreas
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Lange,  Bodo M.H.
Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Scholz, A.-K., Klebl, B. M., Morkel, M., Lehrach, H., Dahl, A., & Lange, B. M. (2010). A Flexible Multiwell Format for Immunofluorescence Screening Microscopy of Small-Molecule Inhibitors. Assay and Drug Development Technologies., 8(5), 571-580. doi:10.1089/adt.2009.0260.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-7A9F-B
Abstract
Large-scale screens in mammalian cells demand for flexible high-throughput screening platforms that allow to analyze cellular traits on a genome-wide level or to identify small-molecule inhibitors (SMIs) from complex compound libraries. In this study we developed and tested high-density cell arrays made out of polydimethylsiloxane (PDMS) that support cell growth directly on standard glass microscope objective slides. We analyzed the effect of 3 reference inhibitors (MLN-8054, VX-680, and flavopiridol) and 4 exploratory, cell permeable small-molecule kinase inhibitors (two benzothiophene-based and two 4-amino-6-arylpyrimidine-based compounds) on different cell lines, using prototype 5 × 5 and 9 × 9 array carpets. We found that high-density PDMS cell arrays support growth of a broad range of cell types, are well suited for compound screens, and are compatible with high-content screening platforms. This novel array format is of particular advantage for compound screening to identify SMIs, when a combination of flexibility with respect to culture volume, well density, and high-resolution imaging is required. In addition, we demonstrated the suitability of this format for reverse transfection and siRNA experiments.